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Summary

Model-free LOD-score methods are often employed to
detect linkage between marker loci and common dis-
eases, with samples of affected sib pairs. Although ex-
tensions of the basic one-disease-locus model have been
proposed that allow separate inclusion of other types of
affected relative pairs, discordant relative pairs, covar-
iates, or additional disease loci, a unified framework
that can handle all of these features has been lacking.
In this report, I propose a conditional-logistic parame-
terization that generalizes easily to include all of these
features. Two data examples, one using simulated data
and one using type 1 diabetes, illustrate applications of
the models.

Introduction

Since Risch (1990b) proposed a LOD-score formulation
for affected-sib-pair (ASP) linkage analysis, a variety of
extensions and modifications of the basic ASP LOD
score have been suggested. For analysis of other types
of affected relative pairs (ARPs), Risch (1990b) also pro-
posed LOD-score formulations similar to that for ASPs.
Risch (1990b) and Lunetta and Rogus (1998) developed
and studied analogous LOD-score models for discordant
sib pairs (DSPs), and Rogus and Krolewski (1996) dem-
onstrated that, for diseases with high sibling recurrence
risk, DSPs can have, for detection of linkage, power
equal to or greater than that of ASPs. Greenwood and
Bull (1997, 1999a) proposed a multinomial logistic re-
gression model that easily allows covariates to be in-
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cluded in an ASP analysis and showed that inclusion of
important covariates can increase the power to detect
linkage.

Multilocus models have also been proposed. Risch
(1990a) developed multilocus extensions to the ASP
and ARP models and investigated specialized models
that are additive or multiplicative in disease pene-
trance. Cordell et al. (1995) parameterized the two-
locus ASP LOD-score model, using joint allele-shar-
ing–specific relative risks as functions of genetic var-
iance components and the disease prevalence and then
studied the application of these models to type 1 di-
abetes. They also developed genetic constraints for the
two-locus case. Olson (1997) proposed an alternative
parameterization to the ASP and ARP two-locus LOD
score, on the basis of genetic variance components
divided by the population ASP proportion. Cordell et
al. (1999) developed genetic variance-component par-
ameterizations of the multilocus ARP LOD score and
studied their application to conditional analysis of
multiple loci involved in type 1 diabetes.

Although these extensions and modifications increase
the ability of researchers to investigate linkage, no
method has yet been proposed that combines all of these
features into a unified framework. In this article, I shall
develop a conditional-logistic representation of the af-
fected-pair likelihood ratio (LR), one that is valid for
any type of ARP or for a sample containing more than
one type of ARP. The model is parameterized in terms
of the logarithms of allele-sharing–specific relative risks
and is equivalent to the Risch (1990b) likelihood models.
Because of the parameterization, the model can be easily
extended to include the effects of covariates and to
model more than one disease locus. In addition, I pro-
pose a similar parameterization for discordant relative
pairs (DRPs) and show how DRPs can be analyzed both
separately and as part of an analysis that also includes
ARPs. Two data examples, one that illustrates the in-
clusion of DRPs and covariates and one that illustrates
the multilocus models, are given. First, I develop the
conditional-logistic model for the simple case of a one-
locus disease without covariates.
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Methods

The Conditional-Logistic Likelihood Ratio

I first describe the conditional-logistic model in the
case of a single disease locus. For all theoretical devel-
opment, I assume that allele-sharing probabilities are
calculated at the location of the disease locus, using mul-
tipoint methods (e.g., those of Kruglyak and Lander
1995; Kruglyak et al. 1996; Idury and Elston 1997) and
that there is no disequilibrium between disease and
marker loci. Let fri be the unconditional (prior) proba-
bility that a relative pair of type r shares i alleles identical
by descent (IBD), and let be the estimated probability,f̂ri

conditional on available marker data Im, that the pair
shares i alleles IBD, , 1, 2. Also, let p be the numberi = 0
of alleles shared IBD. Let A be the event that both mem-
bers of a pair are affected, and let A1 and A2 be the
events that the first and second sibs, respectively, are
affected.

Then the likelihood ratio (LR) contribution for an
ARP of type r is

P(I FA,r) P(AFI ,r)m mLR = =
P(I Fr) P(AFr)m

P(A )P(A FI ,r,A ) P(A )1 2 m 1 2= 7
P(A )P(A Fr,A ) P(A )1 2 1 2

P(A FI ,r,A )/P(A )2 m 1 2=
P(A Fr,A )/P(A )2 1 2

� [P(A Fp = i,A )/P(A )]P(p = i d I ,r)2 1 2 m
i=0,1,2= � [P(A Fp = i,A )/P(A )]P(p = i d r)2 1 2

i=0,1,2

ˆ� [P(A Fp = i,A )/P(A )]f2 1 2 ri
i=0,1,2= � [P(A Fp = i,A )/P(A )]f2 1 2 ri
i=0,1,2

ˆ� l fi ri
i=0,1,2= ,� l fi ri
i=0,1,2

where li is the relative risk to an individual who shares
i alleles IBD with an affected relative. Specifically, l =0

(=1) is the relative risk for unrelated individuals,lu

is the offspring relative risk, and is thel = l l = l1 o 2 m

MZ-twin relative risk.
So that covariates can later be added to the model, I

propose to parameterize the model in terms of the log-
arithms of genetic relative-risk parameters. Specifically,
let . Then, puttingb = log li e i

P(A Fp = i,A )/P(A )2 1 2

= exp[b I(p = 0) � b I(p = 1)0 1

�b I(p = 2)] ,2

where is the indicator function, we can write theI(7)
model as

ˆbi� e fri
i=0,1,2LR = , (1)

bi� e fri
i=0,1,2

subject to . Equivalently, we can write the likeli-b = 00

hood as

ˆbi� e fri
i=0,1,2L(b ,b ) = P(I Fr) ,1 2 m bi� e fri
i=0,1,2

and the likelihood under the null hypothesis of no link-
age as ; however, for a sampleL(b = 0,b = 0) = P(I Fr)1 2 m

of ARPs, it is easier to directly maximize the LOD score,
which is obtained by summing the base-10 logarithms
of the pair-specific LRs. When markers are fully infor-
mative, the model takes the form of a conditional-logistic
model in which the denominator sums over the set of
“pseudocontrols” that represent the possible IBD out-
comes multiplied by their respective prior probabilities.
When marker information is incomplete, the numerator
also sums over the possible IBD outcomes, so that the
model is a mixture of conditional-logistic models,
weighted by the observed IBD probabilities.

To see that the LR (1) is equivalent to the Risch
(1990b) LR,

ˆz fri riLR = ,�
fi=0,1,2 ri

where , consider first the case of ASPs.z = P(p = iFA,r)ri

For sib pairs, the parameters in the Risch model are
, , and , where lsz = 1/ (4l ) z = l / (2l ) z = l / (4l )s0 s s1 o s s2 m s

is the sibling relative risk. The Risch LR can therefore
be written as

1 l lo mˆ ˆ ˆLR = f � f � f .s0 s1 s2
l l ls s s

Now, the denominator in model (1) equals

1 1 1 1 1 1
b b1 2� e � e = � l � l = l ,o m s4 2 4 4 2 4
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and that LR can be written as

ˆbi� e fri 1 l li=0,1,2 o mˆ ˆ ˆLR = = f � f � f ,s0 s1 s2
l l l ls s s s

the same as the Risch LR.
Model (1) holds for a general ARP of type r; the de-

nominator equals lr, and the numerator is the corre-
sponding linear combination of , lo, and lm. Nol = 1u

additional parameters are needed to include other types
of ARPs in an ASP linkage analysis, and, unlike the
model of Cordell et al. (1999), the disease prevalence
need not be prespecified. To ensure that the genetic con-
straints (Holmans 1993) hold, b1 and b2 must be such
that and —or, equivalently,b1b � 0 b � log (2e � 1)1 2 e

. If a model with no dominance geneticl � 2l � 1m o

variance is to be fit, then —or, equiv-b1b = log (2e � 1)2 e

alently, .l = 2l � 1m o

The conditional-logistic model can now be easily ex-
tended to include covariates and additional disease loci.
I first consider the addition of covariates.

Covariates

Consider the single-locus LR (1), and suppose that we
wish to condition on the value of a covariate denoted
as “x.” Following the same plan of derivation as has
been used for the single-locus model, we can write the
LR as

ˆb �d xi i� e fri
i=0,1,2LR = , (2)

b �d xi i� e fri
i=0,1,2

where di, , 1, 2, are parameters associated with thei = 0
covariate x, with . There are therefore two addi-d = 00

tional parameters—d1 and d2—for every covariate. (If the
data set contains no sib pairs, then only one parameter,
d1, need be added.) The model assumes a log-linear (i.e.,
multiplicative) effect of the covariate on genetic relative
risk, a common, natural, and flexible way to model rel-
ative risk in general epidemiology.

Constraints on regression parameters.—Greenwood
and Bull (1997, 1999a), who have proposed a multi-
nomial logistic regression model for the inclusion of co-
variates in an ASP model, have provided an excellent
discussion of the problem of constraining the covariate
parameters so that Holmans’s (1993) genetic constraints
are satisfied. They model log (1/l ) = log (z /z ) =e m e s0 s2

and .m � n x log (2l /l ) = log (z /z ) = m � n x1 1 e o m e s1 s2 2 2

Algebraic manipulations show that the conditional-lo-
gistic parameters are linear combinations of the
Greenwood-Bull parameters: ,b = (m � m )/log 2 d =1 2 1 e 1

, , and . The Greenwood-(n � n )/log 2 b = �m d = �n2 1 e 2 1 2 1

Bull model is therefore also a conditional-logistic model.
Therefore, the same issues regarding the genetic con-

straints arise under the conditional-logistic parameteri-
zation. I consider two cases. The first is Greenwood and
Bull’s “average constraint” situation, in which one
wishes to constrain the model so that the expected value
of the constrained allele-sharing estimates fall within the
region of the parameter space consistent with a genetic
model. As Greenwood and Bull point out, such a situ-
ation would be reasonable for many covariates—in par-
ticular, continuous covariates such as age. For such cov-
ariates, it seems sensible to expect that the genetic
constraints be valid “on average” but not sensible to
expect them to hold at all values of x, because specific
values of x do not necessarily represent subgroups of
pairs that can be considered to be separate populations.

The conditional-logistic model also can be constrained
in the same manner, with procedures such as those out-
lined by Greenwood and Bull. In addition, I suggest a
conceptually simpler approximation to the “average
constraint” condition that requires only that the ge-
netic constraints hold at the mean of x, denoted as “ ,”x̄
but not necessarily for all values of x. If the model is to
be constrained only at , then the appropriate con-x̄
straints are such that and¯ ¯b � d x � 0 b � d x �1 1 2 2

. To avoid maximization of the¯log {2[exp(b � d x)] � 1}e 1 1

LOD score under joint constraints on the b’s and d’s,
consider the centered covariate . For the first con-¯x � x
straint, write ∗¯ ¯b � d x = (b � d x) � d (x � x) = b �1 1 1 1 1 1

, with a similar result for the second constraint.¯d (x � x)1

The value of , evaluated at , is 0, so, for a¯ ¯(x � x) x = x
centered covariate, no constraints on d1 or d2 are re-
quired, provided that the usual constraints on b1 and b2

hold.
More generally, the covariate may be “centered”

around any value at which the genetic constraints are
assumed to hold. For example, suppose, because of sam-
pling bias, that the covariate sample mean does not es-
timate the population covariate mean m and that m is
known from earlier research. The investigator may
choose to assume that the genetic constraints hold at m

and enter into the conditional-logistic model. Ac-x � m

cording to the argument in the preceding paragraph,
, evaluated at , is 0, so no constraints on d1(x � m) x = m

and d2 are required if the investigator assumes only that
the genetic constraints hold at . Note that only mx = m

must be known; a similar modification of the Green-
wood-Bull approach would require that the population
distribution of x be known.

For some covariates, such as indicator variables that
represent different populations, it is sensible to expect
that the genetic constraints hold for all values of x. If
so, then the constraints must be such that b � d x �1 1

for all x and for0 b � d x � log {2[exp(b � d x)] � 1}2 2 e 1 1
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all x. If the smallest value of x equals 0, then the usual
constraints on b1 and b2 must hold, and the constraints
on d1 and d2 are

�b1
d �1 max x

and

log {2[exp(b � d x)] � 1} � be 1 1 2
d � max .2 x(0( )x

Note that the d’s can still be positive or negative; no
directionality of the covariate effect is implied. However,
when the smallest value of x is arbitrarily set to equal
0 (as is natural for an indicator variable), the formulas
above can be used directly as lower bounds. Otherwise,
joint bounding of the b’s and d’s becomes more com-
plicated. For example, if values of x are positive and
negative (e.g., a coding of �1, 1), then both the upper
bound and the lower bound on the d’s are required and
different bounds on the b’s may be needed.

Because of the genetic constraints, the distribution of
LR (i.e., LOD score) tests of linkage and of tests of
covariate contribution are often mixtures of x2 distri-
butions and are thus difficult to specify except in simple
situations. Use of simulation methods to obtain P values
may be preferred, particularly in complex situations.
However, I provide some guidelines in the next subsec-
tion, using results from Self and Liang (1987).

Covariate types and tests of significance.—Covariates
may be pair specific or individual specific. For pair-spe-
cific covariates, such as a dichotomous indicator for eth-
nic group, two additional parameters per covariate are
fitted. Individual-specific covariates may be incorporated
by inclusion of the pair’s sum (or mean)—or the pair’s
difference, or both—into model (2); either two or four
additional parameters are then fitted for each individual-
specific covariate. In the following, I use the term “cov-
ariate” to mean that two additional parameters are
fitted.

In general, an LR test that compares the model with
a covariate to the model without the covariate can be
used to determine whether a covariate contributes sig-
nificant information about linkage. In essence, such a
test is a test of linkage heterogeneity due to that covariate
and is only meaningful if linkage exists in the first place.
In addition, for the following distributional results to
hold, linkage must be present in the population from
which the data are sampled, to ensure that the true values
of the b’s do not fall on the boundaries of the parameter
space and that the principle represented in case 4 of Self
and Liang (1987) applies. (For a population-indicator
covariate, provided that linkage exists in at least one

subpopulation, it is always possible to code the covariate
so that the true value of the b’s is an interior point of
the b parameter space.)

Whether genetic constraints are required only at one
value of x or for all values of x, the null-hypothesis
values of the d’s equal 0, an interior point of the d pa-
rameter space. Therefore, without loss of generality and
in the presence of linkage, the LR test for significance
of a covariate can be seen to have, asymptotically, a

distribution. It should be noted that transformation2x2

of the covariate is not required for this distributional
result to hold; the purpose of transformation is to sim-
plify the estimation procedure. On the other hand, when
one or both of the true values of the b’s are close to
their boundaries and the sample size is not large enough
to ensure good precision in estimation, the quality of
the asymptotic approximation may be affected. For this
reason, simulations may be preferred for final models
or when the contribution of a covariate is of major in-
terest to the investigator.

Overall tests of linkage include both the b parameters
and the d parameters, increasing the number of df in the
linkage test and thereby raising the LOD-score cutoff
value for every level of significance. For tests of linkage
that include covariates, the distribution of the LR sta-
tistic is a mixture of x2 distributions. For complex mod-
els, simulation-based or exact P values may be preferred,
particularly in candidate regions or in other “final-test-
ing” situations. To avoid such computational intensity,
one might prefer—for preliminary studies, such as in the
setting of a genome scan—approximate P values. As a
large-sample approximation for P values, I suggest the
use of approximate df. Holmans (1993) showed that the
two-parameter LR linkage statistic, under the genetic
constraints, has a distribution slightly stochastically
smaller than a x2 distribution with 1 df. (For example,
a LOD score of 2.3 corresponds to a significance level
of .001. The corresponding LR statistic has the value

, which is smaller than 10.83, the2.3 # 2log 10 = 10.59e

critical value of a x2 with 1 df at the same level of sig-
nificance.) If all covariates are population-indicator cov-
ariates and if the genetic constraints are applied to all
subpopulations, then the LR for the model with the co-
variates is simply the product of all the subpopulation-
specific LRs, all maximized under the genetic constraints.
Each subpopulation makes an independent contribution
to the LR, so that its distribution is stochastically smaller
than a x2 distribution with df equal to the number of
subpopulations.

When genetic constraints are applied only to (orx̄
some other value), then the LR statistic cannot be easily
partitioned. In this case, the null-hypothesis values of
the b’s fall on the boundaries of the b parameter space
and the null-hypothesis values of the d constitute an
interior point of the d space. The LR statistic has a dis-
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tribution that is a mixture of x2 distributions, the largest
with df equal to the number of parameters estimated.
The largest x2 distribution in this mixture is thus a con-
servative upper bound. On the other hand, without co-
variates, constraints on the b’s reduces the effective df
from 2 to slightly less than 1, and I hypothesize that a
similar reduction will be attained in the presence of co-
variates with “average” constraints. Therefore, one
might expect that a x2 distribution with 1 � 2N � Nu c

df will be a reasonable approximation, where Nu is the
number of covariates with “average” or no constraints
and Nc is the number of fully constrained covariates.
This approximation might be used for genome screening
and exploratory data analysis, whereas more time-con-
suming and mathematically difficult (but more accurate)
methods might be reserved for final analyses.

DRPs

DRPs can be analyzed separately or added to a set of
ARPs, with use of the conditional-logistic framework.
Rogus and Krolewski (1996) have demonstrated that
DSPs are more powerful than ASPs when the sibling
recurrence risk is 1.5. Let D be the event that a DRP is
ascertained, and let A1 and U2 be the events that the first
member is affected and the second member is unaffected.
According to the same reasoning that has been used for
ARPs, the LR contribution of a DRP can be written as

P(I FD,r) P(DFI ,r)m m=
P(I Fr) P(DFr)m

ˆ� {P[U FA ,p = i]/[1 � P(A )]}f2 1 2 ri
i=0,1,2= ,� {P[U FA ,p = i]/[1 � P(A )]}f2 1 2 ri
i=0,1,2

after multiplication of the numerator and denominator
by and summation over the possibleP(A )/[1 � P(A )]1 2

IBD states. First consider analysis of DRPs separately.
Substitution of DRP-type relative-risk parameters gives

ˆ� {[1 � P(A FA ,p = i)]/[1 � P(A )]}f2 1 2 ri
i=0,1,2LR = � {[1 � P(A FA ,p = i)]/[1 � P(A )]}f2 1 2 ri
i=0,1,2

ˆ∗� l fi ri
i=0,1,2= ∗� l fi ri
i=0,1,2

∗̂bi� e fri
i=0,1,2= ,∗bi� e fri
i=0,1,2

where , , and . Covar-
∗∗ ∗ ∗ b1b = 0 b � 0 b � log (2e � 1)0 1 2 e

iates may be added to the DRP model in a manner anal-
ogous to that for ARPs.

Now consider addition of DRPs to a set of ARPs with
use of the conditional-logistic framework. Let y =si

, , 1, 2. Then, for a DSP,P(p = iFD,r = s) i = 0 y =s0

, , and (e.g., see Lu-∗ ∗ ∗ ∗ ∗(1/4l ) y = (l /2l ) y = (l /4l )s s1 o s s2 m s

netta and Rogus 1998). Using these expressions, the pre-
vious expressions for zsi, , 1, 2, and the constrainti = 0

, algebraic manipulation gives� z = � y = 1i ri i ri

1∗ ∗l (l � l ) � (1 � l )(l � l )m o s m m o4∗l = ,o 1(l � l ) � (l � l )m s o m2

with approaching 1 as ls, lo, lm, and approach∗ ∗l lo m

1. Substitution of this expression for in the DRP LR∗lo

allows the LR for ARPs and DRPs combined to be max-
imized with respect to three free parameters—lo, lm, and

. (If no sib pairs are present, then two parameters—lo
∗lm

and —can be estimated.)∗lo

Covariates may be added in the same manner as has
been used for ARPs, except that a third covariate pa-
rameter, , must be added, to allow to depend on∗ ∗d l2 m

the covariate. The same arguments used in the case of
ARPs suggest that, in the presence of linkage, the dis-
tribution of the LR test of the covariate is asymptotically
x2 with 3 df. In addition, in simulations, LOD-score
critical values to determine significance of the three-pa-
rameter LOD score that combines ARPs and DRPs, with
no covariates, were determined to be .72, 1.02, 1.65,
1.90, and 2.48 at significance levels of .1, .5, .01 .005,
.001, and .0001, respectively.

Multilocus Models

Consider a model with M disease loci. For simplicity,
we will drop the subscript denoting the type of relative
pair under consideration, but note that all relevant quan-
tities must be calculated conditional on relative pair type.
Let fij)m denote the unconditional probability that the
relative pair shares i alleles IBD at the first locus, j alleles
at the second locus, and so on, up to m alleles IBD at
the Mth locus, for i, j, ), , 1, 2. Let be theˆm = 0 fij)m

corresponding estimated allele-sharing probabilities,
conditional on available marker data, and let bij)m be
the corresponding parameters to be estimated. In gen-
eral, , where lij)m is the relative risk forb = log lij)m e ij)m

a relative pair sharing i alleles IBD at the first locus, j
alleles IBD at the second locus, and so on, up to m alleles
at the Mth locus. These allele-sharing–specific l’s were
first discussed by Cordell et al. (1995). Note that

and .l = 1 b = 000)0 00)0

If the loci are linked, then the must be estimatedf̂ij)m

jointly, and the fij)m must be computed by use of the
recombination fractions between the loci (also see Farrell



Olson: Conditional-Logistic Affected-Relative-Pair Linkage 1765

1997). For unlinked loci, these quantities are products
of the locus-specific quantities. For example, consid-
er a three-locus model in which loci 1 and 2 are linked
but locus 3 is not linked to either locus 1 or locus 2.
Then and . If all three of the loci areˆ ˆ ˆf = f f f = f fijk ij k ijk ij k

unlinked, then and .ˆ ˆ ˆ ˆf = f f f f = f f fijk i j k ijk i j k

The general LR for M loci can be written as

ˆ bij)m� � 777 � f eij)m
i=0,1,2 j=0,1,2 m=0,1,2LR =

bij)m� � 777 � f eij)m
i=0,1,2 j=0,1,2 m=0,1,2

ˆ� � 777 � f lij)m ij)m
i=0,1,2 j=0,1,2 m=0,1,2= . (3)� � 777 � f lij)m ij)m
i=0,1,2 j=0,1,2 m=0,1,2

Cordell et al. (1999) have given expressions for the lij)m

in terms of the genetic-variance components. The general
multilocus model (3) includes all single-locus and epi-
static-variance components, up to and including M-way
epistatic-variance components. Extension of the results
reported by Cordell et al. (1995) shows that genetic con-
straints on multilocus models hold when

l � 1 ,ij)m

l � l � 2lij)0)m ij)2)m ij)1)m ,

l � lij)0)m ij)1)m

for all i, j,), m and at all loci 1, 2,), M. If there is no
dominance-variance contribution for the kth locus (in
ij)k)m) , then .l = 2l � lij)2)m ij)1)m ij)0)m

Specialized models can also be fitted. For a model
multiplicative in penetrance (Risch 1990a), it is well
known that relative risks are muliplicative—that is,

, where is the marginal relative(1) (2) (M) (l)l = l l )l lij)m i j m w

risk for a pair that shares w alleles IBD at locus l. The
multiplicative model is therefore specified by b =ij)m

, where , , 1, 2, are param-(1) (2) (M) (l)b � b � ) � b b w = 0i j m w

eters specific for locus l and , for , 1,), M,(l)b = 0 l = 00

so that there are two free parameters for each locus.
A model additive in penetrance (Risch 1990a) is also

easily specified, by
(1) (2) (M)b b bmi jl = e � e � ) � e � (M �ij)m

, where are locus-specific parameters with(l) (l)1) b b = 0w 0

for all l. For the additive model, is the relative risk
(l)bwe

that the pair shares w alleles IBD at locus l and 0 alleles
IBD at all other loci. A two-locus derivation helpful in
the interpretation of the new parameterization of the
additive model is given in the Appendix.

Covariates can be included in multilocus models by
putting . Inclusion of a singlel = exp(b � d x)ij)m ij)m ij)m

covariate doubles the number of parameters to be esti-
mated. For full multilocus models with covariates, large
sample sizes are needed to have power to detect signif-

icant effects. For data sets of moderate size, use of spe-
cialized models (such as additive and multiplicative mod-
els) provides a means of reducing the number of
parameters to be estimated.

Data Examples

Simulated Data: DSPs and a Covariate

I simulated marker data for ASPs and DSPs from two
populations—one in which the marker was completely
linked to the disease (population L) and one in which
the marker was unlinked to the disease (population U).
Each of the two samples contained 150 ASPs and 150
DSPs. The frequency of the disease allele was .6, and
the penetrances of the disease homozygote, heterozy-
gote, and normal homozygote were .8, .2, and .2, re-
spectively. This genetic model gives a disease prevalence
of .42 and a sibling recurrence risk of .50, so that DSPs
are expected to contain the same amount of linkage in-
formation as do ASPs. Because the disease prevalence is
high, large samples are needed to detect evidence of
linkage.

I analyzed the ASPs and DSPs both separately and
together, with and without the population indicator
(population , population ) as a covariate. Ge-L = 0 U = 1
netic constraints were assumed to hold for both values
of the covariate. For illustration, I also analyzed the two
population groups separately. The results are shown in
table 1. When ASPs are analyzed separately, evidence
for linkage is seen in population L alone, but not in
population U alone or in U and L together. Inclusion of
the population indicator, in the analysis of the U and L
ASPs together, recovers the linkage evidence found in
population L alone. Under this parameterization, b̂ =1

and are the parameter estimates associ-ˆ.203 b = .3722

ated with population L, and andˆ ˆ ˆ ˆb � d = .0 b � d =1 1 2 2

are the parameter estimates associated with popula-.0
tion U. Both the b’s and the d’s model linkage.

The LOD-score difference between the models with
and without the covariate is 1.02 ( , 2 df). WhenP = .096
the conservative approximation of the distribution of
the overall LR statistic is used, the P value for the LOD
score test for linkage (with the covariate) is no greater
than .096 (2 df). When DSPs are analyzed separately,
the results are similar, except that there is virtually no
evidence for linkage in population U and moderate ev-
idence for linkage in U and L together. The LOD-score
difference between the models with and without the cov-
ariate is .325 ( ). The conservative approxima-P = .473
tion for the overall DSP LOD-score test of linkage gives

.P � .0813
When the DSPs are added to the sample of ASPs but

no covariate is included, moderate evidence for linkage
is obtained (LOD score .94, ). When the co-.05 ! P ! .1
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Table 1

LOD Score and Parameter Estimates for ASP and DSP Simulated Data

DATA SET

COVARIATE IN MODEL?
(NO. OF PARAMETERS)

SAMPLE

SIZE

LOD
SCORE

PARAMETER ESTIMATEa

ASP DSP ASP DSP

b1 b2
∗b1

∗b2 d1 d2
∗d1

∗d2

ASP:
Linked No (2) 150 1.03 .204 .374
Unlinked No (2) 150 .00 .000 .000
Unlinked and linked No (2) 300 .00 .000 .000
Unlinked and linked Yes (4) 300 1.03 .203 .372 �.203 �.372

DSP:
Linked No (2) 150 1.04 .000 �.508
Unlinked No (2) 150 .05 .000 �.106
Unlinked and linked No (2) 300 .77 .000 �.298
Unlinked and linked Yes (4) 300 1.09 .000 �.508 .000 .402

ASP and DSP:
Unlinked and linked No (3) 600 .94 .175 .324 �.297
Unlinked and linked Yes (6) 600 2.02 .311 .377 �.304 �.311 �.377 .199

a Parameters with an asterisk (*) are DSP parameters; parameters without an asterisk are ASP parameters.

variate is included in the model, evidence for linkage is
substantially increased (LOD-score difference 1.08,

, 3 df). The overall LOD score is 2.02, givingP = .174
an LR statistic of 9.3. The crude approximation sug-
gested for the significance of the overall ARP LOD score
does not apply, since there are two additional parameters
estimated. As a result, a P value of .024 was obtained
by use of the generating model (but with no linkage) to
simulate 1,000 replicates, each of which was analyzed
under the conditional-logistic model. The overall P value
for the test of linkage that includes both DRPs and the
covariate is thus smaller than that for any of the separate
analyses of ARPs and DRPs, with or without covariates,
except when the population subgroups are analyzed sep-
arately. Overall, this example shows that inclusion of
covariates and DRPs in an ARP analysis can increase
evidence for linkage.

Type 1 Diabetes: Multiple Loci

I analyzed data from a genome scan (Mein et al. 1998)
of 356 ASPs with type 1 diabetes, a complex disease
with multiple genetic and environmental determinants.
Three chromosomal locations that showed significant or
suggestive linkage in the genome scan were chosen for
analysis: IDDM1 (near the HLA locus and D6S291),
IDDM2 (near TH/INS, on chromosome 11), and a lo-
cation near D16S3098. One-, two-, and three-locus
models were fitted to these data. The results are shown
in table 2. The one-locus LOD scores show a large effect
for IDDM1 and modest effects for IDDM2 and
D16S3098. For D16S3098, , implying thatl = 2l � 1m o

dominance variance at this locus was 0. Two-locus full,

multiplicative, and additive models suggest that the ad-
ditive model is a poorer fit for all two-locus combina-
tions than is either the multiplicative model or the full
model. LOD-score differences between the full (eight-
parameter) and multiplicative (four-parameter) models
were not large enough to declare the full model to be a
significantly better fit.

Full, multiplicative, and additive three-locus models
were also fitted. For these analyses, I assumed that
D16S3098 contributes no dominance variance to either
main effects or interactions. As a result, the full, multipli-
cative, and additive model have 17, 5, and 5 free pa-
rameters, respectively. Starting values for the full model
were obtained by summation of appropriate estimates
from the one-locus models (i.e., by assumption of a mul-
tiplicative model). Again, the additive model was a
poorer fit than the multiplicative model, and the LOD-
score difference between the full and multiplicative mod-
els is not large enough to declare the full model to be a
significantly better fit. The best-fitting, most parsimo-
nious model is therefore the multiplicative model, al-
though a larger sample size is probably needed to ensure
that sufficient power exists to detect such a difference if
it exists. An upcoming report by Cordell et al. (1999)
gives an extensive multilocus analysis (under a variance-
components parameterization) of this data set.

Discussion

I have proposed a unified conditional-logistic frame-
work for model-free linkage analysis of qualitative traits,
using relative pairs. The model easily allows the inclu-
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Table 2

LOD Scores and Number of Parameters for Three-Locus Analysis of Type 1 Diabetes Regions

ANALYSIS AND REGION(S)

LOD SCORE (NO. OF PARAMETERS) FOR

Full Model
Multiplicative

Model
Additive
Model

One locus:
IDDM1 31.75 (2) ) )
IDDM2 2.76 (2) ) )
D16S3098 3.29 (2) ) )

Two locus:
IDDM1 and IDDM2 35.51 (8) 34.53 (4) 33.87 (4)
IDDM1 and D16S3098 35.57 (8) 34.97 (4) 32.66 (4)
IDDM2 and D16S3098 6.14 (8) 5.95 (4) 5.65 (4)

Three locus:
IDDM1, IDDM2, and D16S3098 39.53 (17) 37.82 (5) 35.01 (5)

sion, within the same analysis, of more than one type
of ARP, DRPs, covariates, and multiple genetic loci. The
data examples have shown that, in a sib-pair analysis,
inclusion of covariates and DSPs can increase the evi-
dence for linkage. Some guidelines for both determi-
nation of the significance of a covariate and an approx-
imation of the distribution of the overall linkage statistic
that may be useful in preliminary analyses also have been
given. More-extensive simulations will be required in
order to determine whether the suggested approximation
is useful in practice. For final analyses, simulation-based
P values are recommended, to ensure accuracy of the
inferences.

Nonetheless, inclusion of covariates increases the
number of df of the overall LOD score for linkage, so
that only covariates that substantially improve the LOD
score will increase the power of the linkage test. In some
situations, the number of parameters to be estimated
may be reduced. For example, if age or age at onset is
to be included as a covariate in a set of sib pairs, it is
likely, in many cases, that the mean age of the pair con-
tains much more linkage information than does the dif-
ference between the pair’s ages, so that it would be pru-
dent to include only the mean age.

Another way in which the number of parameters
could be reduced is by putting . This con-d = d { d1 2

straint assumes that lo and lm both increase by the same
factor ed for a unit increase in x. For some covariates,
this assumption may reasonably approximate the true
model. For other covariates, this assumption is not rea-
sonable. Consider, for example, a dichotomous covariate
indicating membership in one of two ethnic groups. Sup-
pose that in the first ethnic group ( ) there is nox = 0
linkage and that in the second ethnic group ( ) therex = 1
is linkage. Then , so that in theb = b = 0 l = l = 11 2 o m

first ethnic group. In the second ethnic group, d1l = eo

and . Putting implies that (=ls),
d2l = e d = d l = lm 1 2 o m

a highly unrealistic assumption. Therefore, great care
must be taken when one is considering reducing the
number of parameters in the model by putting .d = d1 2

The conditional-logistic model assumes that all geno-
typed pairs have a value at each covariate in the model.
If substantial missing data are present for a covariate
but not for the allele-sharing, then power to detect link-
age would be lessened if one limits the analysis to only
those pairs for which covariate values are not missing.
To include the allele-sharing information from pairs with
missing covariates, one might either replace the missing
value with the covariate mean or use a multiple-im-x̄
putation method to find a suitable value to substitute
for the missing covariate value. If the covariate values
are missing at random, then substitution of the mean
would reasonably approximate the average pair. If the
covariate values are missing in a nonrandom manner,
then parameter estimates might be considerably biased,
although biased parameter estimates may be preferable
to the loss of power expected if the pairs are excluded
from the analysis in their entirety.

I have discussed one way in which DRPs can be in-
cluded in an analysis of ARPs. An advantage of this
approach is that it allows all types of relative pairs to
be included in the same analysis. A potential disadvan-
tage is that power may be reduced because additional
parameters must be estimated. In this report, I have con-
centrated on full models that account for all available
genetic variability. Previous researchers have proposed,
both for ASPs alone (e.g., see Risch 1990b; Whittemore
and Tu 1998) and for DSPs alone (Lunetta and Rogus
1998), one-parameter models that have good power for
most genetic models. Similar models might be adapted
to the conditional-logistic framework and to the com-
bined ARP-DRP model, to provide more-powerful tests
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under some or most genetic models. In addition to re-
ducing the number of parameters to be estimated, LR
statistics derived from these models might have less-com-
plex large-sample distributions. The power of an ARP-
DRP analysis might also be reduced if the genetic model
generates DRPs with considerably more or less power
than ARPs have. Schemes that weight ARPs and DRPs
according to their relative linkage information might
also be developed and applied in the conditional-logistic
framework. Much further research is needed, in order
to investigate these issues and to develop more-powerful
tests.

Another issue requiring further exploration is the ap-
plication of complex models to sibship data. For simple
ASP models, there remains some controversy about op-
timal weighting of affected sibships, although recent
work (Sham et al. 1997; Greenwood and Bull 1999b)
suggests that the common practice of down-weighting
sibships with more than two affected individuals is un-
necessarily conservative. Nonetheless, there is general
agreement that the LOD-score contribution from large
affected sibships is at least somewhat biased. For many
studies, inclusion of DSPs will increase the number of
pairs from each sibship that are analyzed. The potential
impact that covariates can have on the degree of bias
should also be addressed.

I have shown that the conditional-logistic framework
extends easily to both general and specialized multilocus
models. Models that mix additive and multiplicative
properties are also possible. For example, suppose that
three disease loci, denoted as “1,” “2,” and “3,” are
such that loci 2 and 3 are additive with respect to each
other and that locus 1 interacts with locus 2 multipli-
catively and with locus 3 multiplicatively. Such a model
would be reasonable if locus 1 and either locus 2 or
locus 3 (but not both) are necessary to produce disease
and if loci 2 and 3 are such that genetic heterogeneity,
which approximates additivity, holds for these two loci.
This model can be specified by putting

(1) (2)b b
i jl = e (e �ijk

. In this model, the 2,3 and 1,2,3 epistatic-ge-
(3)b
ke � 1)

netic variances are equal to 0. If loci 2 and 3 interact,
but not in a multiplicative manner, then one can specify

. In this model, all genetic-vari-
(1) (2,3) (1) (2,3)b b b �b
i jk i jkl = e e = eijk

ance components are allowed to be positive.
Multiple testing issues arise when researchers perform

several analyses using various combinations of covar-
iates, ARPs and DRPs, and multiple loci, particularly if
the various combinations are studied as part of an over-
all genome scan designed to detect susceptibility loci. To
help control type I error, I recommend that investigators
choose, a priori, a scientifically “reasonable” model with
a modest number of parameters to be the primary scan
and then report rescans, under other models, as supple-
mental exploratory analyses. Similarly, complex inves-
tigations of signals detected by a primary scan should

be treated as exploratory and subject to replication. The
conditional-logistic framework is planned for imple-
mentation in SAGE (1999, version 4.0), a genetic-anal-
ysis computer software program.
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Appendix A

Expressions for the lij in terms of variance compo-
nents have been given by Cordell et al. (1995), for a
two-locus model. When the epistatic variance compo-
nents are set equal to 0, to obtain an additive model,
the lij are

l = 1 ,00

1
l = 1 � V ,01 a2 22K

1
l = 1 � (V � V ) ,02 a d2 2 2K

1
l = 1 � V ,10 a2 12K

1
l = 1 � (V � V ) ,11 a a2 1 22K

1 1
l = 1 � V � V � V ,12 a a d2 1 2 2( )K 2

1
l = 1 � (V � V ) ,20 a d2 1 1K

1 1
l = 1 � V � V � V ,21 a d a2 1 1 2( )K 2

1
l = 1 � (V � V � V � V ) ,22 a d a d2 1 1 2 2K

where and are the additive and dominance vari-V Va dl l

ances, respectively, for loci , 2.l = 1
Put and for , 1, 2, with

(2) (1)b b (l)
j il = e l = e i,j = 0 b =0j i0 0
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, for , 2. When these expressions are substituted0 l = 1
for the right-hand sides of the foregoing expressions for
the lij, the results are

l = 1 ,00

(2)b
1l = e ,01

(2)b
2l = e ,02

(1)b
1l = e ,10

(1) (2)b b
1 1l = e � e � 1 ,11

(1) (2)b b
1 2l = e � e � 1 ,12

(1)b
2l = e ,20

(1) (2)b b
2 1l = e � e � 1 ,21

(1) (2)b b
2 2l = e � e � 1 ,22

—or, generally, , with , for
(1) (2)b b (l)
i jl = e � e � 1 b = 0 l =ij 0

, 2.1
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